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Abstract

Using the mathematical similarity of the governing equations of the classical beam and plate theories and the
Levinson beam and plate theories, and the basis of load equivalence, exact relationships between the bending solutions
of the two theories for beams and plates are derived. These relationships enable the conversion of the well-known
classical (Euler-Bernoulli) beam and (Kirchhoff) plate solutions to their shear deformable counterparts using the
Levinson beam and plate theories. Examples are given to illustrate the use of these relationships. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Two-dimensional plate theories can be classified into two types: (1) classical (Kirchhoff) plate theory
(CPT), in which the transverse shear deformation effects are neglected and (2) shear deformation plate
theories. The one-dimensional counterpart of the Kirchhoff plate theory is the Euler—Bernoulli beam theory
(EBT).

There are a number of shear deformation plate theories. The simplest is the first-order shear deformation
plate theory (FSDT), also known as the Mindlin plate theory (Mindlin, 1951). The FSDT extends the
kinematics of the CPT by including a gross transverse shear deformation in its kinematic assumptions, i.e.
the transverse shear strain is assumed to be constant with respect to the thickness coordinate. In the FSDT,
shear correction factors are introduced to correct for the discrepancy between the actual transverse shear
force distributions and those computed using the kinematic relations of the FSDT. The one-dimensional
counterpart of the Mindlin plate theory is known as the Timoshenko beam theory (TBT).
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Second- and higher-order shear deformation plate theories use higher-order polynomials in the expansion
of the displacement components through the thickness of the plate. The higher-order theories introduce
additional unknowns that are often difficult to interpret in physical terms. There are a number of third-order
plate theories in the literature, and a review of these theories is given in the text book by Reddy (1984b).

A third-order plate theory is based on the following displacement field or its equivalent:

ulro.2) = 26, 00) o2 (8,4 2 ). (112
050:2) =20, 0) o2 (9,4 52 ). (L1b)
W(%J’,Z):WO(X,J’), (llC)

where o = 4/(3h%). Note that by setting « = 0 in Eqgs. (1.1a)—(1.1¢), we recover the displacement field of the
FSDT. The displacement field accommodates a quadratic variation of the transverse shear strains (and
hence shear stresses) through the thickness and the vanishing of transverse shear stresses on the top and
bottom surfaces of the plate. Unlike the FSDT, a third-order plate theory requires no shear correction
factors. Fig. 1 shows the positive coordinate directions, stress resultants, and kinematics of deformation of
an edge in various theories.

z

(ug,wo)

Fig. 1. The positive coordinate directions, stress resultants, and kinematics of deformation of an edge in various theories.
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Levinson (1981, 1980) used a vector approach to derive the equations of equilibrium of isotropic beams
and plates. Reddy (1984a) independently developed a third-order laminate plate theory and derived
equations of motion associated with the displacement field (1.1a)—(1.1c) using the principle of virtual
displacements. Bickford (1982) and Heyliger and Reddy (1988) also derived a variationally consistent third-
order beam theory, much in the same way Reddy did for plates. The Levinson plate theory (LPT) is a
lower-order theory ! than the Reddy plate theory, and contains no higher-order stress resultants. For other
pertinent works on theories of plates, the reader may consult the text books of Reddy (1984b, 1997, 1999)
and references therein (also see Wang and Kitipornchai, 1999).

In this study, bending relationships between the Levinson beam theory (LBT) and the EBT and the LPT
(a simplified version of the Reddy third-order plate theory) and the Kirchhoff plate theory are developed.
Numerical examples are presented to show how the solutions of the Levinson plate equations are obtained
directly from the Kirchhoff plate solutions for rectangular plates with two parallel edges simply supported
while the other two edges may have arbitrary boundary conditions (Lévy solutions).

2. Beams
2.1. Governing equations

The equilibrium equation of the EBT is

22/E
M
—ddxzxx:q for 0 <x < L. (2.1)

It is useful to introduce the shear force QF

_ant

£ 22
O =g (2.2)
and rewrite the equilibrium equation (2.1) in the form
dor
_=x 2.3
gl (2.3)

where superscript E refers to quantities belonging to the EBT.

The form of the boundary conditions of the Euler-Bernoulli theory is either the displacement w§ is
known or the shear force OF = dME /dx is specified at a point on the boundary. In addition, either the slope
dwf /dx is specified or the bending moment ML is known at a boundary point. Thus, we have

. wy OF = g
Specify : dnE or rdr o (2.4)
- M,

The strain—displacement relations of the Levinson-Bickford—Reddy beam theories are given by

! The order referred to here is the total order of differential equations of the theory. The Levinson theory is a sixth-order theory,
whereas the Reddy theory is an eighth-order theory.
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doy (dgy  dwp
b =2 g oz | + o ) (2.5a)
dwk
1o = (1—p2) | ¢F + =2 2.5b
o= (1= ) (0 + 55, (2.50)
where superscript L refers to quantities belonging to the LBT, and
4 4

Instead of using the variationally derived equations of equilibrium, here we use the thickness-integrated
equations of elasticity. These are exactly the same as those of the TBT:

dmt L dot
_ xx — 0 — X 27
dx + Qx ’ dx ( )
The stress resultant—displacement relations for the LBT are given by
_ de¢ d*wk
L _ X 0
va = Dy dx — aFy dx2 (28)
dwk
. = sz v - 29
Qx (¢x + d)C ? ( )
where
Dxx = Dxx - O‘Ecxa (2103)
(D F) = [ (PB4 (2.10b)
A
sz - / (1 - ﬁZZ)ze dA (2100)
A

The form of the boundary conditions for the LBT are taken to be the same as those for the TBT, and they

are
L L
Specify : { g‘ﬂ } or {%L } (2.11)

2.2. Relationships

Here, we develop the relationships between the bending solutions of the EBT and the LBT. At the outset,
we note that both the EBT and the TBT are fourth-order theories, whereas the variationally derived
Bickford—Reddy beam theory (BRT) (Reddy, 1999; Wang et al., 2000) is a sixth-order theory. However, the
LBT is a fourth-order theory. Therefore, the relationships between LBT and EBT are similar, as will be
shown shortly, to those between TBT and EBT (see Wang, 1995).

First, we note that Egs. (2.2) and (2.7) together yield

ok =08+ ¢, (2.12)

MY =M. + Cix + C,. (2.13)
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From the stress resultant—displacement relationships in Egs. (2.2), (2.3), (2.8) and (2.9), we obtain

_ d¢r d*wh d*wh

Dxxa - aF;C)CW =—Du—> dx2 L+ Cix + G, (2.14)
dw0 d*wf

XZ<¢ +— dx ) =-—Dn——= a3 + (i, (215)

where the stiffness coefficients D,,, F,,, and S,. are defined in Egs. (2.10b) and (2.10c), and o and f are
defined in Eq. (2.5b). Integrating Eq. (2.14) with respect to x, we arrive at

_ dw} dwE x?

Dxxd)f—ochxEO: —D,, dx(’ +O = 5+ Cx+ G, (2.16)
Solving Eq. (2.16) for dw{ /dx, substituting it into Eq. (2.15), and solving for (l)i, we obtain

dwf  oF, 1
L 0 XX E
_ W 2.1
[ON or —|—D 5 (Qx + Cl) Do <C1 > + Cox + Ca) (2.17)
Returning to Eq. (2.15) and solving for dwf /dx, we obtain

dwt  dwf D,

EO:EO—FSXZDM (Q +C1) Dxx <C1 D + C2X+C3> (218)
and on integration, we arrive at the deflection relationship

Dy, 1 X3 X2
wy =wy + SDo (MF + Cix) — Do <C1 T TOT+ e c4>. (2.19)

This completes the derivation of the relationships between the solutions of the EBT and the LBT. The
constants of integration, C;, C,, C3, Cy appearing in Egs. (2.12)—(2.19) are determined using the boundary
conditions. For free (F), simply supported (S) and clamped (C) ends, the boundary conditions are given by

F:M;=M;=07=0;=0, (2.20)

S:wp =wy =ML =M; =0, (2.21)
d E

C:w§:w5:%:¢£:0. (2.22)

2.3. Examples

Here, we present two examples to derive the solutions of the LBT using the relationships derived in
Section 2.2 and the solutions of the EBT.

2.3.1. Simply supported beam
Consider a simply supported beam of length L and subjected to uniformly distributed load of intensity
qo- The stress resultants and the deflection of the Euler—Bernoulli beam are

0; (x) :%(1 —2%)7 (2.23)
M () =q°TL2%(1 -7); (2.24)
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gol* (x 23 X
Wg(x):24Dxx (Z_F+F . (225)

Using the relationship for simply supported beams (Wang et al., 2000), the corresponding bending solu-
tions for the Timoshenko beam are

Ol = 0F () =D (1-27), (2.26)
2

M) = ME) = B (1%, (2.27)

¢'(x) = —%Wg: —;fg; (1 —6§+4§—2)7 (2.28)

wy (x) = wg (x) +K:‘1XZMEY(X) = 2(2)11;1 [(%— 22—2—1—2—1) + 129(%—2—2)], (2.29)

where superscript T refers to quantities in the TBT, and

D’CX
Q= -
KA. L?

(2.30)

and K is the shear correction factor introduced in the TBT.
In the case of the LBT the boundary conditions yield C; = C, = C; = C4 = 0. Hence, the solutions are

0-() = 0F () =D (1-27), 231)
12
My (x) = M (x) :qOT%(l —%) (2.32)
P (x) = —%hﬁf;‘; 0F = —2%; Kl - 6z—z+4z—2) - 12ocA(1 - 2%)] (2.33)
Wh(x) = wE(x) +ng\:ng = Z‘ifé; K% - zz—z +z—:> + 129(% - z—zﬂ : (2.34)
where
_ szz . 0= S’Z)zz . (2.35)
The Bickford—Reddy theory (Reddy and Wang, 1998) has the solution
0% (x) = (q)o_%u) [sinhA“x — tanh (%) cosh Zx + % (1 - 2%)} , (2.36)
M) = MEG) = P X (123, (237)
¢} (x) = —%g +5FS 07, (2.38)

D AN 2’2
wh(x) = wE(x) + (")‘)—4“) (S = ) {_ tanh (7> 51nh)x+cosh)x+7%(l —%) - 1], (2.39)

where superscript B refers to quantities in the BRT, and (S,. = 4,.):



J.N. Reddy et al. | International Journal of Solids and Structures 38 (2001) 4701-4720 4707

Ii)cszx A_rszz
2= T . ou= e : (2.40)
O((F;chxx - Echxx) a(Echxx - F;chxx)

Dxx = Dxx - aEr)m F;cx = Ecx - OCH'CX;

A_xz - sz - ﬂsz - sza sz - sz - ﬁF;cm (241)
I‘ixz = sz - ﬂszv

(A, Dy, For, Hy) = / (1,2,24,29)E, d4, (2.42)

A
(Ayz, Dy-, F) = /(1,22,24)zedA. (2.42b)
A
For a rectangular cross-section beam, it can be shown that
DxxDxr 6 Dxx 6
— = - = . (2.43)

2.3.2. Cantilever beam
For a cantilever beam under uniformly distributed load of intensity gy, the stress resultants and the
deflection of the Euler-Bernoulli beam are found to be

E() — _x
0F(x) = ol (1-7 ), (2.44)
By = DL (] x\?
M (x) = - (1 L) ; (2.45)
gol* [ x? ¥ooxt

Using the relationships (2.26)—(2.29) for clamped—free (CF) beams, the corresponding bending solutions for
the TBT are

T\ _ AE(N _ _ X
0f(x) = 0F() = oL (1 -7 ). (2.47)
Ty By QoL X2
ML) = ME) = - L (1-2), (248)
dwE gol?® [ x x* X
T —_ "0 _ _ 0 A A I
9.0 =~ = “on. <3L ot L3>’ (2.49)
1 qoL* o X x x
T(x) = wE ME(x) — ME(0)] = S ST, BT, Yo bl B 2.
W) =+ e 5~ EO)] = (67— 4T+ 5 ) + 1205 (2-7) (2.50)
In the LBT, the boundary conditions lead to
F;CX DXX
C=C=0, C=-"0K0), C=3"ME(0), (2.51)
and the solution becomes
Loy _ B/ _ X
O(x) = OF) = qul (1-7 ). (2.52)
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Lpy By QoL (o x\?
M) =ME) = - L= (1-2), (2.53)
dwE  oF, qoL? x x X x
L= — 220 4 27w raBy _ oF - 107 L3240 ad
010) =~ 04 2 [0F) - F0)) =~ B | (3T 3T 4 ) s aa | (2.54)
Dy, oFyy
WOL(x) = wg —|—Dxxsz [ME( ) — M;(O)] +Dxxsz Qf(O)x
_ @bt [l 2 o> % x
= 45 {(6 ST ) 12027 -5 ) +24aa7 . (2.55)
In the case of the Bickford—Reddy beam, we find the solution as
B qolt : qolt
= =——— |[sinh Ax — AL cosh A(L — x)| + L—x), 2.56
0) = (5 i Yisinta (@ 0) + B ) (2:56)
By _ B Gl X2
MEG) =ME@) = - L= (1-2), (2.57)
¢ (x) = vy ohs 07 (2.58)
ST T T DS '
B E qolt Dxx 2 Dx,
= + | == — | (2Lx — —+ = cosh Ax
o (e) = () (2&2) (AXZDXX>( x ) (A cosh)L) (A D, >[
C qolt D, 1 + ALsinh AL
+ ALsinh A(L — x)] ( 4 ) (z‘ixszx> ( cosh L (2.59)

3. Plates
3.1. Kirchhoff plate theory

The governing equation of equilibrium of the Kirchhoff plate theory is given by
02MK MK MK
XX + 2 Y + pA4

Ox? Ox 0y 0y?

where ¢ is the transverse load, and superscript K refers to quantities in the Kirchhoff plate theory, and

az K 62
M}E——D( Yo 4y )

0x2 0y?

PPwk kK

K 0 0
M, = —D(v e + 32 ), (32)

2, K
0w,

MK = _D(1 —v)—%
4 ( V) Ox0y’

where D is the flexural rigidity,



J.N. Reddy et al. | International Journal of Solids and Structures 38 (2001) 4701-4720 4709

ER
D=3 (3.3)

In terms of the deflection w{, Eq. (3.1) takes the form
DVAVAwE = 4. (34)

The boundary conditions involve specifying

wy or VK, (3.5)
K
66Lno or MX, (3.6)
where
MK
I/’;K _ Q,'f + a ns ’ (373.)
Os
ME = MX cos? 0 — 2MXI§ sinfcos 0 + Mylj sin® 6, (3.7b)
MR = — (Mji - Mylj) sin 0 cos 0 + Mxlj(cos2 0 — sin’ 0), (3.7¢)
oMK oMK oMX oMK
K _ xx Xy 0 Xy pid in0 3.7d
Qn ( ax + ay ) cosu + ( @x * ay s ’ ( )

and 0 is the orientation of the unit outward normal to the boundary (measured counterclockwise).

3.2. Levinson plate theory

The displacement field in Eq. (1.1a)—(1.1c) results in the following linear strains:

e = zaaﬁ" - ocz3(aa(ix + 6;1;5 >, (3.8a)
o 22%_w3<%+%>, (3.8b)
265, = z< aa(ix + agj;) - ocz3<aa¢;” + aéiy + ZZivg;L ), (3.8¢)
k= (1= 52) (4,4 22), (3.80)
)= (1-p2) (¢y+aavf>. (3.80)

Recall from Eq. (2.6) that o = 4/(34%) and 8 = 4/h.
The equations of equilibrium of the LPT are obtained by integrating the stress equations of equilibrium
of the three-dimensional elasticity. We have
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aMx]; aM;;’ L
- <—ax Ty Te=0 (3.9)
oM:  om:
B Xy »w L — 0 310
( Ox * dy > 0, ’ (3.10)
oQ- 30y
( el ekt (3.11)

The three equations can be combined into one
azML aZML aZML
o) s 2 =0. 3.12

Ox? + Oxdy + 0?2 +a ( )

The boundary conditions involve specifying

wy or QOF, (3.13)

¢, or M-, (3.14)

¢, or M~ (3.15)
where (M5 MY QL) are defined by Egs. (3.7b)—(3.7d) with superscript K replaced with L.

The moment resultants (My;, M, M) and transverse shear stress resultants (OF, O}) are given in terms of
the displacements as

D Rl 0¢p Pwk *wk
L _ = X -y _ "% 0
M; = 5 [4( & ay) ( a2 TV 3 )], (3.16a)
6 ¢, *wk  o*wt
L _ D(1 —v) 0o, ¢ _ azwg
M, = —s 2 o T axdy |’ (3.16c¢)
QL — ﬂ ) _;’_6_W]6 — Eh ) +% (3 17a)
3 *Uax ) 314+v)\7Y oax )] '
QL_ﬂ ¢ +% __Eh ¢ +% (3.17b)
yo3 Yoy ) 314w\ oy ) ’

3.3. Relationships

The governing equations of static equilibrium of plates according to the Kirchhoff and Levinson plate
theories can be expressed in terms of the moment sum (or Marcus moment (Marcus, 1932), .#:

M, + A/Iyy

3.18
1+v ( )

M =
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First note that

Pwk  ?wk
K _ 0 0\ _ 2. K
M ——D<62+ay2>——DVWO,

D 0p, 09,
L P x v\ w2 L
/%—5[4<ax+ay> VWO].

Hence, the equilibrium equation (3.6) of the Kirchhoff plate theory can be expressed as

Viu* = —q,
WK

~

Similarly, the equilibrium equation (3.12) can be written as
V2t = —q,
aa(fcx M aa(iv - % (VZWOL * 5/1)/L )

From Egs. (3.21a) and (3.22a), in view of the load equivalence, it follows that

Vzwg =

MY = % + DV,

where @ is a function such that it satisfies the biharmonic equation

Vi =0.
Substitution of Eqgs. (3.17a) and (3.17b) into Eq. (3.11) yields
2., (0, 0, _p 1) _
_§Gh< o "‘FE‘FVWO =dq.

From Egs. (3.22b) and (3.25), we obtain

5 s L MY
6Gh<v ¥ *p) -
and using Egs. (3.19), (3.21a) and (3.23), we arrive at the expression

M
L K
wy=wy +5 57— P+ Y,
2 Gh

where ¥ is a function such that
V¥ =0.

4711

(3.19)

(3.20)

(3.21a)

(3.21b)

(3.22a)

(3.22b)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

After a series of algebraic manipulations, we can establish the following relationships for the rotations

and stress resultants:

b = aw{§+ 3 6,/%K+6@+h2 0Q
* ox  10Gh ox ox 10 oy’
owf 3 2 20 I ag

oy  10Gh oy oy 10 ox’

b, =

(3.29a)

(3.29b)
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0 /04 2h*0Q
M-E=ME—_D(l—v)— | —=-=—="= DV’ .
xx xx ( V) ay ( ay 25 ax) + % ) (3 303)
o /04 2K 0Q
ME=MX —D(1 =)~ == +5- — | + DV?® .
” » (1=v) Ox ( Ox + 25 6y> +DV'e, (3.30b)
A K/ D
My =ME +D(1 - —5zlas a2 |9 :
b = My, + D1 =) {axéy 25 <@y2 6x2) } (3.30¢)
0 2 oQ
L _ K R < 082
O =0r + D5 V'@ +D(1-v) % (3.31a)
0 2 0Q
L __ K o2 _= _ il
0, =0, +DayV @ —2D(1—v) =, (3.31b)
where
3D, D _,
=—Vo+&— N=—VD+ D — .
O=GnY 2re- ¥ GV oo, (3.32)
and Q is defined by
op, 09,
Q=" :
oy o (3.33a)
and it is the solution of
10
—VzQ—&—ﬁQ =0. (3.33b)

3.4. Lévy solutions using relationships

Here, we consider the bending problem of rectangular plates with two opposite edges simply supported
while the other two edges are supported in an arbitrary manner. The coordinate system is chosen such that
sides x = 0, a are simply supported, while sides y = +b/2 have arbitrary boundary conditions. The solution
of such plates can be obtained using Lévy’s method of analysis in which the solution and load distribution
are expressed in the form

w (%, 3) = Y Wy () sina,x, (3.34)
m=1

b.(x,3) =D Xu(y) cos a,x, (3.35)
m=1

Y, (y) sin o,x, (3.36)

NgE

¢,(x,y) =

1

m

q(x,y) = i On(y) sin a,x, (3.37)

m=1
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where the edges x = 0, a are simply supported, «,, = (mn/a), the coefficients Q,, are determined from

2 a
Qm(y) = 5 /(; Q<x7)’) Sin oz,,,xdx (338)

and a and b are the plate dimensions along the x and y axes, respectively. Clearly, the assumed solution
satisfies the boundary conditions of the simply supported edges. The Lévy solution of the Kirchhoff plates is
represented by

wy (x, ) Z ) sin o,x. (3.39)

L
v

We wish to determine the unknown coefficients (¥, X,,Y,), and consequently (wg,d,, o,
My, My, ML), in terms of W,<.

Substltutmg the expressions (3.34)—(3.37) and (3.39) into Egs. (3.19) and (3.20) and the results into Eq.
(3.23), we arrive at

MY = H* +D Z(C‘m sinh ,,y + C,, cosh a,,y) sin a,,x, (3.40)

m=1

where Cy,, and C,, are constants to be determined using the boundary conditions of edges y = +b/2.
Simlarly, from Egs. (3.27), (3.29a), (3.29b), (3.30a)—(3.30c), (3.31a) and (3.31b), we have

K

M - . .
w(% = w(l)((x,y) + %E + Z; [(CW — ZmiClm> cosh o,y + (C4m — ;Tmc2m> sinh ocmy] sina,x, (3.41)

aWo 30N & 3D 3D
by & TToah ax Z {0( [<2Gh Cim — Cs ) sinh o,y + <2Gh Com C;m) cos ocmy}

m=1

2

h
107"

N|‘<

(Cym sinh o,y + Cy,, cosh o,y) + — 4, (Cs,, cosh 4,y + Cg,, sinh )vmy)} COS Ol X, (3.42)

~ Owp 3ot & 3D 3D
b, o Y06k By % +m§:l {ochth Conm C3m> sinh o,y + (2th C4m) cos amy]

1 1 . 1
+ i |:<yclm + ; C2m> SIHh Ocmy + <yc2m + — Clm) COSh Ofmyil

2

+ 10 0 (Csy sinh 4,y + Cg,, cosh A,,,y)} sin o, (3.43)

+DZ { Cyn sinh o,y + Cyy cosh a,y) — (1 = v)or,

D y
mCm mcm _Cm
(gGh“ n = O Cam 45 2)

x sinh o,y + ( Son % Com — 0y Cam + %Clm) cosh acmy] V) A

x (Cs, cosh 4,y + Cg,, sinh i,,,y)} sin o, (3.44)
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D
<_fxmclm - OCmC‘4m +Xc2m>

My’;:M}I;—i-DZ{(Clmsinh:xmy—i— Cyn cosha,y) + (1 — v)a, %Gh 7

2

2h
+ = (1 = v)Anoin

. D
x sinh o,y + (5—01,,,C2m — 0y Capy + §C1m> cosha,,y 25

5Gh

X (Cs, cosh 1,y + Cg,, sinh /l,ny)} sin a,,.x, (3.45)

My =MS+D(1—v)> {oc

D 1
(—amclm — 0y Cam +XC2,,, + —C]m> cosh o,y

2 5Gh 2 2a,
+ D Com — anC +2¢ +LC sinh o,y +ih2(/12+oc2)(c sinh /,,y
%Gh m~2m m~3m 2 Im 2“”,! 2m m, 25 m m Sm m,
+ Cgn cosh i,,,y)} COS Gy X, (3.46)

= . 2 , )
Q)‘; = Qf +D Z [(xm(Clm sinh o,y + Cy,, cosh o,,y) + 3 (1 = v)An(Csy cosh 4,y + Cg,, sinh /Imy)]

m=1

X COS 0, X, (3.47)
L K = ) 2 .
0, =0;+D Z 0y ( Cip cosh o,y + Cypy sinh o,y) + 3 (1 = v)otu(Csy sinh A,y + Cg,, cosh 4,,3)
m=1
X Sin o,,x, (3.48)
where

, 10
Ty = O+ 5 (3.49)

A total of six constants, Cy,, through Cg,, are to be determined using the boundary conditions on edges
y = +(b/2) of a specific plate problem.

3.5. Examples

3.5.1. General solution

Here, we determine the six constants for the case of plates with edges x = 0, a simply supported and the
remaining two edges, y = +(b/2), having the same boundary conditions, namely simply supported,
clamped or free. For this case, the deflection should be symmetric about the y axis when the load is
symmetric in y. Therefore, only the even functions of y should be included in the expression for wj. Thus,
we must have

Cip = Cq, =0. (3.50a)
Similarly, ¢, must be an odd function of y, implying

Com = 0. (3.50b)
Consequently, Egs. (3.41)—(3.48) reduce to
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e C,,, sinh o, y) Sin o,,x, (3.51)

m

(ﬂK 00
w](; = wg(x,y) + ﬁ+ Z <C3m cosh o,y —
6

m=1

0 3o & 3D .
¢x = WO +———+ Z |:{xm <— C2m - C%m) cosh Ay + Z C2m sinh Iy
m=1

ox  10Gh ox 2Gh 2

h2
+ E/L,,Csm cosh Jvmy} COS Gy, (3.52)
Cowk 3t & 3D : Co [ 1.
= — - h — sinh
b, o +— 10Gh oy +Z [ (ZGh Com C3m> sinh o,y + 5 . sinh o,y
h2

+ ycosh ocmy) + mamCs,,, sinh imy} sin o,,x, (3.53)

X 2h? .
ML = MK + DZ {sz,,, cosh o,y — 55 (1 = )22, Cs,, cosh 4,y — (1 = v)a,, lz C,,, sinh o,y

+ oy (5 Com — C3m> cosh ocmy] } Sin o, x, (3.54)
5
L— mX 4 Y h 20 2 h 1— inh
M, =M, + DZl Cyncosho,y +— 25 (1 = v) A, Csp cosh A,y + ( V)0l Esz sinh o,y
D .
+ (WCM - C3m> cosh ocmy] } sin o,,x, (3.55)
6

o0

1 D 1 .
MxLy = M;(y +D(1 —v) Z { lzocmsz ycosh o,y + <5thx Cow — 02 C3p + 2C2m> sinh cxmy]

m=1

ﬁhZ ()2 +o )CSm sinh /lmy} COS Uy, (3.56)
>0 2
Q)E = Q}f +D Z [ocmCZm cosh o,y + 3 (I = v)2,Cs,, cosh /lmy} COS Oy X, (3.57)
m=1
>0 2
Qﬁ = Qf +D Z [ocmsz sinh o,y + 3 (I = v)a,,Cs,, sinh l,,,y} sin o,,x. (3.58)
m=1

The three constants C,, Cs,, and Cs, can be determined using the actual boundary conditions on edges
y = +b/2. In the paragraphs below, we shall determine them for simply supported, clamped, and free edges.

3.5.2. Simple supports on edges y = +b/2
When edges y = +£b/2 of the rectangular plate are simply supported, we require

wh=wk =0, M-=MX=0, ¢ =0. (3.59)
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Hence from Egs. (3.51)—(3.53) and (3.59), the constants are found to be

Com = Cs = Csp = 0. (3.60)
In view of Egs. (3.50a), (3.50b), (3.58) and (3.60), the bending relationships are further simplified to

(o) =l () g (3.61)
be(x,y) = — % + ﬁ a,giK : (3.62a)
¢, (x,y) = —% ﬁ ag%yK, (3.62b)
My =My, My =M, My =M, (3.63)
o =0f= % - % (3.64a)
0y =0y = azg:lj ag};' (3.64b)

From Eqgs. (3.63), (3.64a) and (3.64b), one can see that for simply supported rectangular plates, the stress
resultants predicted by the Levinson plate theory are equal to those furnished by the classical thin plate
theory. In addition, considering Eq. (3.33a), the solution effectively leads to a constant in-plane rotation
tensor, i.e.,

a¢x _ a¢y

=—. 3.65
oy Ox ( )

Lim et al. (1988) made the assumption that the relation given by Eq. (3.65) is true for plate problems
using the Lévy method of analysis. However, it should be pointed out that the relation given by Eq. (3.65) is
only valid for rectangular plates with all edges simply supported. It is not valid for rectangular plates with
edges x = 0, a simply supported while edges y = +b/2 are either clamped or free.

Table 1 gives the maximum deflection parameters of simply supported rectangular plates subjected to a
uniformly distributed load ¢g,. As observed from Table 1, there is an excellent agreement between the
present Levinson results obtained using Eq. (3.61) and those exact solutions of Cooke and Levinson (1983)
obtained from solving the uncoupled governing equations of the LPT. The agreement of results confirms

Table 1
Maximum deflection parameters (w — wyD/qoa*) for simply supported rectangular plates under uniformly distributed load ¢, (v = 0.3,
K, =5/6 and m = 20)

hja bla=1* bla=2*
Lee et al. (2000)> Cooke and Levinson  Eq. (3.61)° Lee et al. (2000)* Cooke and Levinson  Eq. (3.61)°
(1983)¢ (1983)¢
0.04 0.00410 0.00410 0.00410 0.01018 0.01018 0.01018
0.10 0.00427 0.00427 0.00427 0.01045 0.01045 0.01045
0.20 0.00490 0.00490 0.00490 0.01143 0.01143 0.01143

#Thin plate solutions are 0.00406 and 0.01013 for »/a = 1 and 2, respectively.
°Based on the Mindlin plate theory.
“Based on the LPT.
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the correctness of the bending relationships derived. Interestingly, one can see from Table 1 that if the value
of 5/6 is adopted for the Mindlin shear correction factor, the Mindlin plate deflections of simply supported
rectangular plates are exactly the same as those based on the LPT. One can also show that (Lee et al., 2000)
the Mindlin and Levinson stress resultants will also be the same for rectangular plates if the Mindlin shear
correction factor K is taken to be 5/6.

3.5.3. Clamped on edges y = £b/2
When edges y = £b/2 of the rectangular plate are clamped, we use the boundary conditions
owk
L _ K _ = —0 = =
wy =wy =0, ¢, = 3 0, ¢,=0. (3.66)
Substituting the boundary conditions (3.66) in Egs. (3.51)—(3.53), the constants are found to be

Oy [Py /om tanh 222 — (at,,p,, + &,,) tanh 222 ] + 2,1,

Con = (42 sinh 222 — B, cosh %) ’ (3.67a)

Cs,, = sech d';b (% Cy,, sinh a;b - p,,,) , (3.67b)

Cspy = — 1—(2) </11m>sech }V;b {fxm (2351> Com coshaLzb + o, + ém} , (3.67¢)
where

A, = [g tanha';—b—ocm<%> —2:%], B, = [%—ai(%)tanh%], (3.68a)

Pm = (%)ﬂﬁ y=b/2 Cn = <ﬁ>Q}c{m y=b/2> Ny = (ﬁ)Q}; y=b/2" (3.68b)

Table 2 gives the maximum deflection parameters of rectangular plates with edges x =0, a simply
supported and the other two edges, y = +b/2, clamped. The plate is subjected to a uniformly distributed
load of intensity ¢o. A disparity of the Levinson plate results can be observed between those furnished by
Cooke and Levinson (1983) and by the present relationship (Egs. (3.51), (3.67a)—(3.67¢c), (3.68a) and
(3.68b)). Even when compared to the Mindlin plate solutions obtained by Lee et al. (2000), where the
normals are assumed to undergo constant rotations, the Levinson plate results by Cooke and Levinson
(1983) are consistently lower and hence their Levinson plate seems to be stiffer. This is contrary to Lev-
inson’s more flexible plate formulation as the plate theory allows the warping of the rotated normals. To

Table 2
Maximum deflection parameters (w = wyD/(qoa*)) for rectangular plates with two opposite edges and the other two edges clamped,
and subjected to uniformly distributed load ¢y (v = 0.3, K, = 5/6 and m = 20).

h/a bla=1* bja=2*
Lee et al. (2000)* Cooke and Levinson  Eq. (3.61)° Lee et al. (2000)° Cooke and Levinson  Eq. (3.61)°
(1983)¢ (1983)°
0.04 0.00197 0.00196 0.00198 0.00851 0.00850 0.00852
0.10 0.00221 0.00217 0.00227 0.00885 0.00879 0.00889
0.20 0.00302 0.00292 0.00322 0.01000 0.00984 0.01013

#Thin plate solutions are 0.00192 and 0.00845 for 5/a = 1 and 2, respectively.
°Based on the Mindlin plate theory.
“Based on the LPT.
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seek an explanation for the disparity of results, one may first derive the uncoupled equations for the
Levinson transverse deflection and the normal rotations, which are given as

16
Vi = (D - 5Ghv2>q’ (3.69)
1, 3 3 100 (3¢, 0
s, (1 3 _,\0 100 . 9,
Ve = (D+10Ghv>6x+h2 ay<ay > ) (3.69b)
13 3 100 (3¢, 0
= (ot )o rals ) 6
Vb <D+10Ghv>6y 7 6x<6y A (3.69¢)

The uncoupled equation for the Levinson transverse deflection, obtained herein is the same as that derived
by Cooke and Levinson (1983). However, the uncoupled equations for the normal rotations presented by
Cooke and Levinson (1983) are erroneous, as their equations do not contain the last term on the right-hand
side of Egs. (3.69b) and (3.69¢c). As discussed carlier, this last term can only be omitted for the special case
of a simply supported rectangular plate where these missing terms vanish inherently, as shown in Eq. (3.65).
As one can see by ignoring these terms or by imposing the constant in-plane rotation tensor on the con-
cerned plate problem, it will have an undesirable stiffening effect on the plate bending behavior.

3.5.4. Free on edges y = £b/2
When edges y = +b/2 of the rectangular plate are free, the boundary conditions are
L _ 2K L _ K _ L _
M,=M; =0, O/=V>=0, M;=0, (3.70)

where VyK = Q;,( + 6Mx'; /0x is the Kirchhoff effective shear force. In view of these boundary conditions, Egs.
(3.55), (3.56) and (3.58) give

PuimcOth?5? 4 [, — £ (2, + a2 )| coth 5

Con = (4,, sinh % — B,, cosh %22 ) ’ (371a)
Cip = %cosecha';—b{ [rxzb cosh “';b - 2(114;\;) sinh agb} Cop — ﬁ (A2 +o2)p, + é,,,}, (3.71b)
Csn = — ;—;cosech% <56CLi’)hC2m Sinha;b+;}:)a (3.7c)
A, = [g—im<%>cothigb]fxm, (3.71d)
B, = [a;"‘—b cothog—b— oci(%) — 2(31+—vv)]’ (3.71e)
P = % (e % (3.72)

Interestingly, if one is to substitute Egs. (3.71a)—(3.71e) and (3.72) into Egs. (3.51) and (3.54)—(3.58), the
specialized Kirchhoff-Levinson deflection and stress—resultant relationships for rectangular plates with two
opposite simply supported edges and the other two edges free will be exactly the same as the corresponding
Kirchhoff-Mindlin bending relationships obtained by Lee et al. (2000) when the Mindlin shear correction
factor K is set to 5/6. Table 3 gives results predicted by the Mindlin plate theory (Lee et al., 2000) and the
LPT (via Egs. (3.51), (3.54)—(3.58), (3.71a)—(3.71e) and (3.72)) for uniformly loaded square plates with two
simply supported edges while the other two edges are free. Here, v is taken to be 0.3 while the Mindlin shear
correction factor K is 5/6. It is evident from Table 3 that the results predicted by the Levinson and the
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Bending parameters w = wyD x 10/(goa*) and M = M x 10/(goa?) for uniformly loaded, square plates of length a with two opposite

edges simply supported and the other two edges free (v = 0.3, K; = 5/6 and m = 50)

h/a w(a/2,0) w(a/2,a/2) M (a/2,0) M, (a/2,0) 0:(0,0)/(goa)
Lee et al. Present Lee et al. Present Lee et al. Present Lee et al. Present Lee et al. Present
(2000)* work® (2000) work (2000) work (2000) work (2000) work
0.01 0.1310 0.1310 0.1504 0.1504 1.225 1.225 0.270 0.270 0.464 0.464
0.05 0.1319 0.1319 0.1522 0.1522 1.225 1.225 0.264 0.265 0.463 0.463
0.10 0.1346 0.1346 0.1560 0.1560 1.225 1.225 0.256 0.256 0.461 0.461
0.15 0.1391 0.1391 0.1616 0.1616 1.226 1.226 0.247 0.247 0.459 0.459
0.20 0.1454 0.1454 0.1690 0.1690 1.229 1.229 0.237 0.237 0.458 0.458
#Based on the Mindlin plate theory (from the unpublished manuscript of Lee et al.).
®Based on the LPT (using Egs. (3.51), (3.54), (3.55), (3.57), (3.71a), (3.71e) and (3.72)).
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Fig. 2. Variation of shear forces along x = a/2 for uniformly loaded square SFSF plates (h/a = 0.1, v = 0.3, K; = 5/6, and m = 50).

Mindlin plate theories have a perfect one-to-one correspondence, thus quantitatively confirming the
foregoing discussion that the Kirchhoff-Levinson and the Kirchhoff-Mindlin deflection and stress—resul-
tant relationships are the same. Also from Fig. 2, one can observe a very good agreement between the
Mindlin and Levinson shear forces (O, QyL), which vanish at the free edges. The Kirchhoff shear and
effective shear forces (Qf, VyK) are also shown in Fig. 2.

4. Concluding remarks

In this paper, exact relationships between the bending solutions of the Levinson beam and plate theories
and the Euler-Bernoulli beam and Kirchhoff plate theories are presented. The relationships can be used to
generate bending solutions of the Levinson beam and plate theories whenever the Euler—Bernoulli beam
and Kirchhoff plate solutions are available. Since solutions of the Euler—Bernoulli beam and Kirchhoff
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plate theories are easily determined or are available in most textbooks on mechanics of materials for a
variety of boundary conditions, the relationships presented herein make it easier to compute the solutions
of the Levinson beam and plate theories directly from the known classical beam and plate solutions. These
relationships may also be used to develop finite element models of the Levinson beam and plate theories
from those of the CPT.

References

Bickford, W.B., 1982. A consistent higher order beam theory. Develop. Theor. Appl. Mech. 11, 137-150.

Cooke, D.W., Levinson, M., 1983. Thick rectangular plates-1I, the generalized Lévy solution. Int. J. Mech. Sci. 25, 207-215.

Heyliger, P.R., Reddy, J.N., 1988. A higher-order beam finite element for bending and vibration problems. J. Sound Vibr. 126 (2), 309—
326.

Lee, K.H., Lim, G.T., Wang, C.M., 2000. Thick Lévy plates re-visited. Int. J. Solids Struct., submitted for publication.

Levinson, M., 1980. An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun. 7 (6), 343-350.

Levinson, M., 1981. A new rectangular beam theory. J. Sound Vibr. 74 (1), 81-87.

Lim, S.P., Lee, K.H., Chow, S.T., Senthilnathan, N.R., 1988. Linear and nonlinear bending of shear-deformable plates. Comput.
Struct. 30 (4), 945-952.

Marcus, H., 1932. Die Theorie Elastischer Gewebe. Springer, Berlin, Germany.

Mindlin, R.D., 1951. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31-38.

Reddy, J.N., 1984a. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51 (4), 745-752.

Reddy, J.N., 1984b. Energy and Variational Methods in Applied Mechanics. Wiley, New York.

Reddy, J.N., 1997. Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton, FL.

Reddy, J.N., 1999. Theory and Analysis of Elastic Plates. Taylor & Francis, Philadelphia, PA.

Reddy, J.N., Wang, C.M., 1998. Deflection relationships between classical and third-order plate theories. Acta Mech. 130 (3-4), 199-
208.

Wang, C.M., 1995. Timoshenko beam-bending solutions in terms of Euler—Bernoulli solutions. J. Engng. Mech. ASCE 121 (6), 763—
765.

Wang, C.M., Reddy, J.N., Lee, K.H., 2000. Shear Deformable Beams and Plates. Relationships with Classical Solutions. Elsevier, UK.

Wang, C.M., Kitipornchai, S., 1999. Frequency Relationship Between Levinson plates and classical thin plates. Mech. Res. Commun.
26 (6), 687-692.



